Loss of fibroblast growth factor receptors is necessary for terminal differentiation of embryonic limb muscle.
نویسندگان
چکیده
Early in embryogenesis, precursors of the limb musculature are generated in the somite, migrate to the limb buds and undergo terminal differentiation. Although myogenic differentiation in culture is affected by several growth factors including fibroblast growth factor (FGF), it remains uncertain whether migration and differentiation of myogenic cells in vivo are directly regulated by such growth factors. To investigate the roles of FGF signaling in the regulation of myogenesis both in the somite and the limb bud, mosaic chicken embryos were generated that consist of somitic cells carrying transgenes expressing one of the following: FGF1, FGF4, the FGF receptor type-1 (FGFR1) or its dominant negative mutant (delta FGFR1). Cells infected with virus producing FGF ligand migrated into the somatopleure without differentiating into myotomal muscle, but differentiated into muscle fibers when they arrived in the limb bud. In contrast, cells overexpressing FGFR1 migrated into the limb muscle mass but remained as undifferentiated myoblasts. Cells infected with the delta FGFR1-producing virus failed to migrate to the somatopleure but were capable of differentiating into myotomal muscle within the somites. These results suggest that the FGFR-mediated FGF signaling (1) blocks terminal differentiation of myogenic cells within the somite and (2) sustains myoblast migration to limb buds from the somite, and that (3) down-regulation of FGFRs or FGFR signaling is involved in mechanisms triggering terminal differentiation of the limb muscle mass during avian embryogenesis.
منابع مشابه
The effect of Fibroblast Growth Factor-2(FGF-2) and retinoic acid on differentiation of mouse embryonic stem cells into neural cells
Introduction: Embryonic Stem (ES) cells as pluripotent cells derived from the inner cell mass of blastula can differentiate to neural cells in vitro and this property is valuable in studies of neurogenesis and in the generation of donor cells for transplantation. In this regard, the propose of this research, was the study of the role of two important factors in the development of neural syst...
متن کاملFGFR4 signaling is a necessary step in limb muscle differentiation.
In chick embryos, most if not all, replicating myoblasts present within the skeletal muscle masses express high levels of the FGF receptor FREK/FGFR4, suggesting an important role for this molecule during myogenesis. We examined FGFR4 function during myogenesis, and we demonstrate that inhibition of FGFR4, but not FGFR1 signaling, leads to a dramatic loss of limb muscles. All muscle markers ana...
متن کاملEvaluation of Chronotropic Properties of Mouse Embryonic Stem Cells-Derived Cardiomyocytes After Fibroblast Growth Factor Treatment
Purpose: We investigated the effect of (bFGF) (basic-Fibroblast Growth Factor) on the differentiation of divided cardiomyocytes from mouse embryonic stem cells (ES) and their pharmacological properties. Materials and Methods: The mouse embryonic stem cells (Royan B1) were cultured as 800 cells per 20µl of a hanging drop. After two days, ES cells in each drop aggregated to form embryoid bodies ...
متن کاملCell surface fibroblast growth factor and epidermal growth factor receptors are permanently lost during skeletal muscle terminal differentiation in culture
One characteristic of skeletal muscle differentiation is the conversion of proliferating cells to a population that is irreversibly postmitotic. This developmental change can be induced in vitro by depriving the cultures of specific mitogens such as fibroblast growth factor (FGF). Analysis of cell surface FGF receptor (FGFR) in several adult mouse muscle cell lines and epidermal growth factor r...
متن کاملBasic fibroblast growth factor in the chick embryo: immunolocalization to striated muscle cells and their precursors
The identification of acidic and basic fibroblast growth factors (FGFs) in a number of embryonic tissue extracts has implicated these growth factors in the regulation of a variety of embryonic events including angiogenesis, eye development, and muscle differentiation. Lack of information concerning the cellular distribution of the growth factor within these tissues has made it extremely difficu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 122 1 شماره
صفحات -
تاریخ انتشار 1996